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ABSTRACT

We study in detail how the pulse width of gamma-ray bursts is related to energy under the assumption that the
sources concerned are in the fireball stage. Due to the Doppler effect offireballs, there exists a power-law relationship
between the two quantities within a limited range of frequency. The power-law range and power-law index depend
strongly on the observed peak energy Ep as well as the rest-frame radiation form, and the upper and lower limits of the
power-law range can be determined byEp. It is found that within the same power-law range, the ratio of the FWHMof
the rising portion to that of the decaying phase of the pulses is also related to energy in the form of power laws. A
plateau/power law/plateau feature is observed in the two relationships. In the case of an obvious softening of the rest-
frame spectrum, the two power-law relationships also exist, but the feature evolves to a peaked one. Predictions of the
relationships in the energy range covering both the BATSE and Swift bands for a typical hard burst and a typical soft
one are made. A sample of FRED (fast rise and exponential decay) pulse bursts shows that 27 out of the 28 sources
belong to either the plateau/power law/plateau feature class or to the peaked feature group, suggesting that the effect
concerned is indeed important for most of the sources of the sample. Among these bursts, many might undergo an
obvious softening evolution of the rest-frame spectrum.

Subject headinggs: gamma rays: bursts — gamma rays: theory — relativity

1. INTRODUCTION

Owing to the large amount of energy observed, gamma-ray
bursts (GRBs)were assumed to undergo a relativistically expand-
ing fireball stage (see, e.g., Goodman 1986; Paczyński 1986).
Relativistic bulk motion of the gamma-ray–emitting plasma
plays a role in producing the observed phenomena of the sources
(Krolik & Pier 1991). It was believed that the Doppler effect over
the whole fireball surface (the so-called relativistic curvature ef-
fect) might be the key factor to account for the observed spec-
trum of the events (see, e.g., Mészáros & Rees 1998; Hailey et al.
1999; Qin 2002, 2003).

Some simple bursts with well-separated structure suggest that
theymay consist of fundamental units of radiation such as pulses,
with some of them being seen to comprise fast rise and an ex-
ponential decay (FRED) phases (see, e.g., Fishman et al. 1994).
These FRED pulses could be well represented by flexible em-
pirical or quasi-empirical functions (see, e.g., Norris et al. 1996;
Kocevski et al. 2003). Fitting the corresponding light curves with
the empirical functions,many statistical properties of pulseswere
revealed. Light curves of GRB pulses were found to become nar-
rower at higher energies (Fishman et al. 1992; Link et al. 1993).
Fenimore et al. (1995) showed that the average pulse width is
related to energy by a power law with an index of about �0.4.
This was confirmed by later studies (Fenimore et al. 1995; Norris
et al. 1996, 2000; Costa 1998; Piro et al. 1998; Nemiroff 2000;
Feroci et al. 2001; Crew et al. 2003).

In the past few years, many attempts at interpretation of light
curves of GRBs have been made (see, e.g., Fenimore et al. 1996;
Norris et al. 1996, 2000; Ryde & Petrosian 2002; Kocevski et al.
2003). It has been suggested that the power-law relationship can
be attributed to synchrotron radiation (see Fenimore et al. 1995;

Cohen et al. 1997; Piran 1999). Kazanas et al. (1998) proposed
that the relationship can be accounted for by synchrotron cooling
(see also Chiang 1998; Dermer 1998; Wang et al. 2000). Phe-
nomena such as the hardness-intensity correlation and the FRED
form of pulses were recently interpreted as signatures of the rela-
tivistic curvature effect (Fenimore et al. 1996; Ryde & Petrosian
2002; Kocevski et al. 2003; Qin et al. 2004, hereafter Paper I). It
was suspected that the power-law relationship might result from
a relative projected speed or a relative beaming angle (Nemiroff
2000). Due to the feature of self-similarity across the energy
bands observed (see, e.g., Norris et al. 1996), it is likely that the
observed difference between the light curves of the different chan-
nels might mainly be due to the energy channels themselves. In
other words, light curves of different energy channels might arise
from the samemechanism (e.g., parameters of the rest-frame spec-
trumand parameters of the expandingfireballs are the same for dif-
ferent energy ranges), differing only in the energy ranges involved.
We believe that if different-channel light curves of a burst can

be accounted for by the same mechanism, where except for the
energy ranges concerned no parameters are allowed to be differ-
ent for the different energy channels, then the mechanism must
be the main cause of the observed difference. A natural mecha-
nism that possesses this property might be the Doppler effect of
the expanding fireball surface when a rest-frame radiation form
is assumed. Indeed, as shown in Paper I, the four-channel light
curves ofGRB951019were found to bewell fitted by a single for-
mula derived when this effect was taken into account. In Paper I
the power-law relationship between the pulse width and energy
was interpreted as beingmainly due to different active areas of the
fireball surface corresponding to the majority of photons of these
channels. However, how the width is related to energy remains
unclear. In the following we present a detailed analysis of this is-
sue, and on the basis of our analysis we make predictions of this
relationship over awide range covering both the BATSE and Swift
bands.
This paper is organized as follows. In x 2 we investigate in a

general manner how the width and the ratio of the rising width to
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the decaying width of GRB pulses are related to energy. Then we
make predictions of the relationship over the BATSE and Swift
bands for typical hard and soft bursts in x 3. In x 4 a sample
containing 28 FRED pulse sources is employed to illustrate the
relationship. A brief discussion and our conclusions are presented
in the last section.

2. GENERAL ANALYSIS OF THE RELATIONSHIP

Studies of the Doppler effect of the expanding fireball surface
were presented by different authors, and based on these studies
formulae applicable to various situations are available (see, e.g.,
Fenimore et al. 1996; Granot et al. 1999; Eriksen & Gron 2000;
Dado et al. 2002a, 2002b; Ryde & Petrosian 2002; Kocevski et al.
2003; Paper I; Shen et al. 2005). In the following we employ one
of them that is suitable for studying the issue noted above, where
a highly symmetric and expanding fireball is concerned.

It can be verified that the expected flux of a fireball expanding
with a Lorentz factor �>1 can be determined by (for a detailed
derivation the formula one can refer to Paper I)

f�(�) ¼
2�R2

c

D2�3(1� � )2 1þ �= 1� �ð Þ½ ��f g2

;

Z �̃�;max

�̃�;min

Ĩ(��)(1þ ���)
2(1� � þ ��)g0; �(�0; �) d��; ð1Þ

with �min � � � �max, �min � (1� � )��;min, �max � 1þ ��;max,
� � (t � D/cþ Rc /c� tc)/(Rc /c), and �� � (t� � tc)/ Rc /cð Þ,
where t is the observation time measured by the distant ob-
server, t� is the local timemeasured by the local observer located at
the place encountering the expanding fireball surface at the posi-
tion � relative to the center of the fireball, tc is the initial local time,
Rc is the radius of the fireball measured at t� ¼ tc,D is the distance
from the fireball to the observer, Ĩ(��) represents the development
of the intensity measured by the local observer, and g0,�(�0,�)
describes the rest-frame radiation; �0;� ¼ (1� � þ ��)��/(1þ
���), �̃�;min ¼ max f� � 1; ��;ming, and �̃�;max ¼ minf� /(1� � );
��;maxg, with ��;min ¼ (t�;min � tc)/ Rc/cð Þ and ��;max ¼ (t�;max�
tc)/ Rc /cð Þ being the upper and lower limits of �� confining Ĩ(��),
respectively. (Note that since the limit of the Lorentz factor is
�> 1, the formula can be applied to the cases of relativistic,
subrelativistic, and nonrelativistic motions.)

The expected count rate of the fireball measured within fre-
quency interval [�1, �2] can be calculated with

C(�)¼
Z �2

�1

f�(�)

h�
d� ¼ 2�R2

c

hD2�3(1� � )2 1þ �= 1� �ð Þ½ ��f g2

;

Z �̃�;max

�̃�;min

Ĩ(��)(1þ ���)
2(1� � þ ��)

Z �2

�1

g0; �(�0; �)

�
d�

� �
d��:

ð2Þ

This suggests that except for the mechanism [i.e., Ĩ(��) and
g0,�(�0,�)] and the state of the fireball (i.e., �, Rc, and D), light
curves of the source depend on the energy range as well.

For the sake of simplicity, we first employ a local pulse to
study the relationship in great detail and later employ other local
pulses to study the same issue in less detail. The local pulse con-
sidered in this section is that of Gaussian that is assumed to be

Ĩ(��) ¼ I0 exp � �� � ��;0
�

� �2
� �

; ��;min � ��; ð3Þ

where I0, �, ��,0 , and ��,min are constants. As shown in Paper I,
there is a constraint to the lower limit of ��, which is ��;min >
�1/�. Due to this constraint, it is impossible to take a negative
infinity value of ��,min, and therefore the interval between ��,0
and ��,min must be limited. Here we assign ��;0 ¼ 10�þ ��;min so
that the interval between ��,0 and ��,min would be large enough to
make the rising part of the local pulse close to that of the Gauss-
ian pulse. The FWHM of the Gaussian pulse is ���;FWHM ¼
2 ln 2ð Þ1/2�, which leads to � ¼ ���;FWHM/2 ln 2ð Þ1/2. In the fol-
lowing we assign ��;min ¼ 0, take���;FWHM ¼ 0:01, 0.1, 1, and
10, and adopt � ¼ 10, 100, and 1000.

2.1. The Case of a Typical Band Function

Herewe employ theBand function (Band et al. 1993)with typ-
ical indexes�0 ¼ �1 and�0 ¼ �2:25 as the rest-frame radiation
form to investigate how the FWHM and the FWHM1/FWHM2
are related to the corresponding energy, where FWHM1 and
FWHM2 are the FWHMs in the rising and decaying phases of the
light curve, respectively. The FWHM and FWHM1/FWHM2 of
the observed light curve arising from the local Gaussian pulse
associatedwith certain frequency could bewell determined accord-
ing to equation (2), when equation (3) is applied. Displayed in
Figures 1a and 1b are the FWHM-�/�0, p and FWHM1/FWHM2-
�/�0, p curves, respectively. One finds from these curves that for all
sets of the parameters adopted here, a semi–power-law relation-
ship between each of the two quantities (FWHM and FWHM1/
FWHM2) and �/�0, p can be observed within a range (called the
power-law range) spanning more than 1 order of magnitude in
frequency. Beyond this range (i.e., in higher and lower frequency
bands), both the FWHM and FWHM1/FWHM2 of the observed
light curve remains unchanged with frequency. We call the un-
changed section of the curves in the lower frequency band relative
to the power-law range the ‘‘lower band plateau’’ and that in the
higher frequency band the ‘‘higher band plateau.’’ For a certain
rest-frame spectrum (say, when the value of �0, p is fixed), the
power-law range shifts to higher energy bands when � becomes
larger. The power-law range could therefore become an indicator
of the Lorentz factor as long as �0, p is fixed (in practice, as �0, p is
always unclear, what can be determined is the product ��0, p,
which is directly associatedwith the observed peak energyEp; see
discussion below).

The power-law range shown in an FWHM-�/�0, p curve is
marked by a smooth turning at its lower energy end and a sharp
turning at its higher end. Let �low (or Elow) denote the position
of the turning at the lower energy end and �high (or Ehigh) rep-
resent that at the higher end. One finds that �high is well de-
fined due to the sharp feature associated with it while �low is not
since the corresponding feature is smooth. Following to Figure 1a,
we simply define � low by log FWHM(�low) � log FWHMmax�
( log FWHMmax � log FWHMmin)/10, where FWHMmin and
FWHMmax are the minimum and maximum values of the FWHM
of the light curves. Listed in Table 1 are the values of �low and �high
as well as FWHMmin and FWHMmax deduced from the curves
of Figure 1a. One can conclude from this table that �high ’
(2:4 2:5)��0;p for all the adopted Lorentz factors (� ¼ 10, 100,
and 1000) and that log �high � log � low ’ 1:19 1:26, 1.20–1.25,
and 1.20–1.26 for � ¼ 10, 100, and 1000, respectively. This re-
veals that �high is proportional to ��0, p. For the same value of
��0,p, � high is independent of � or �0, p. The power-law range
spans more than 1 order of magnitude in frequency for all the
Lorentz factors concerned. In addition, we find that for the same
value of ���,FWHM, FWHMmin / ��2 and FWHMmax / ��2.

As shown in Qin (2002), when taking into account the
Doppler effect offireballs, the observed peak frequency is related
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to the peak frequency of the typical rest-frame Band function spec-
trum by �p ’ 1:67��0;p, i.e., Ep ’ 1:67�E0;p. In terms of Ep, we
get from Table 1 that log Elow � log Ep ’ �1:10 to �1.02 and
log Ehigh � log Ep ’ 0:157 to 0.177.

In the same way, we confine the power-law range shown in
Figure 1b with �low and �high as well, with �low being defined by
log (FWHM1/FWHM2)(�low) � log (FWHM1/FWHM2)minþ
½ log (FWHM1/FWHM2)max� log (FWHM1/FWHM2)min�/10.
Listed in Table 2 are the values of �low, �high, (FWHM1/
FWHM2)min, and (FWHM1/FWHM2)max obtained from the
curves of Figure 1b. We find from this table that �high ’ (2:3

2:4)��0;p, (2.3–2.5)��0, p, and (2.2–2.5)��0, p for � ¼ 10, 100,
and 1000, respectively, and log �high � log �low ’ 1:18 1:25,
1.20–1.24, and 1.20–1.25 for � ¼ 10, 100, and 1000, respec-
tively. This also shows that although both �high and �low are pro-
portional to��0, p, they are independent of� or �0, p alone. In terms
of Ep, we get log Elow � log Ep ’�1:10 to�1.02 and log Ehigh�
log Ep ’ 0:127 to 0.167. In addition, we find that for the same
value of ���,FWHM, FWHMmin / ��2 and FWHMmax / ��2.
Table 2 suggests that the values of (FWHM1/FWHM2)min and
(FWHM1/FWHM2)max rely only on the local pulse width
���,FWHM.

Fig. 1.—Relationships between (a) the FWHM and energy and (b) the ratio FWHM1/FWHM2 and energy for the light curve of eq. (2) confined within
0:99�/�0;p � �/�0;p � 1:01�/�0;p , in the case of adopting the Band function with �0 ¼ �1 and �0 ¼ �2:25 as the rest-frame radiation form and the Gaussian pulse as
its local pulse. Dotted lines from bottom to top represent the curves associated with���;FWHM ¼ 0:01, 0.1, 1, and 10 for � ¼ 10; solid lines from bottom to top represent
the curves associated with���;FWHM ¼ 0:01, 0.1, 1, and 10 for � ¼ 100; dashed lines from bottom to top stand for the curves associated with���;FWHM ¼ 0:01, 0.1, 1,
and 10 for � ¼ 1000. Shown in (c) and (d ) are the curves in (a) and (b), respectively, where the corresponding energy is presented in units of keV. The two vertical dash-
dotted lines in (c) and (d ) denote the power-law ranges deduced from the curves associated with the case of (�; ���;FWHM) ¼ (100; 10).

TABLE 1

Turning Frequency and Typical Width Obtained

from the Curves in Figure 1a

� ���, FWHM log�low
�0; p

log
�high
�0; p

log FWHMmin log FWHMmax

10......... 0.01 0.20 1.39 �2.87 �2.64

0.1 0.17 1.38 �2.59 �2.39

1 0.13 1.38 �1.84 �1.66

10 0.12 1.38 �0.88 �0.71

100....... 0.01 1.20 2.40 �4.87 �4.64

0.1 1.17 2.40 �4.59 �4.39

1 1.14 2.38 �3.84 �3.66

10 1.13 2.38 �2.88 �2.71

1000..... 0.01 2.20 3.40 �6.87 �6.64

0.1 2.18 3.39 �6.59 �6.39

1 2.14 3.38 �5.84 �5.66

10 2.13 3.39 �4.88 �4.71

TABLE 2

Turning Frequency and Typical Width Obtained

from the Curves in Figure 1b

� ���, FWHM log� low
�0; p

log
�high

�0; p
log FWHM1

FWHM2

� �
min

log FWHM1
FWHM2

� �
max

10......... 0.01 0.20 1.38 �1.57 �1.36

0.1 0.16 1.37 �0.89 �0.69

1 0.13 1.37 �0.63 �0.44

10 0.12 1.37 �0.59 �0.41

100....... 0.01 1.19 2.39 �1.57 �1.35

0.1 1.16 2.36 �0.89 �0.69

1 1.13 2.36 �0.63 �0.44

10 1.12 2.36 �0.59 �0.41

1000..... 0.01 2.19 3.39 �1.57 �1.35

0.1 2.16 3.36 �0.89 �0.69

1 2.13 3.35 �0.63 �0.44

10 2.12 3.37 �0.59 �0.41
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The relation between Elow and Ep or between Ehigh and Ep

suggests that once we obtain the value of Elow or Ehigh in the case
of the typical rest-frame Band function spectrum, we should be
able to estimate Ep, or vice versa.

We notice that a certain value of �/�0, p might correspond to
different energies associated with different values of �0,p. Let us
assign �0;p ¼ 10 keV h�1 when taking� ¼ 10, �0;p ¼ 1 keV h�1

when taking � ¼ 100, and �0;p ¼ 0:1 keV h�1 when taking � ¼
1000. In this situation, ��0;p ¼ 100 keV h�1 holds for all these
cases. Figure 1c shows the curves of Figure 1a in terms of energy,
where the power-law range confined by log Elow/keV ¼1:13 and
log Ehigh/keV ¼ 2:38 (see Table 1) is displayed. Figure 1d shows
the curves of Figure 1b in terms of energy, where the power-law
range confined by log Elow/keV ¼ 1:12 and log Ehigh/keV ¼
2:36 (see Table 2) is plotted. From Figure 1d , one finds that the
curves corresponding to� ¼ 10, 100, and 1000 are difficult to dis-
tinguish. When the values of ��0, p are the same (here ��0;p ¼
100 keV h�1), the two relationships (one is between FWHM and
energy, and the other is between FWHM1/FWHM2 and energy)
are independent of the Lorentz factor, and the power-law ranges
of the curves arising from� ¼ 10, 100, and 1000 become almost
the same.

One can conclude from this analysis that in the case of adopt-
ing the typical Band function with �0 ¼ �1 and �0 ¼ �2:25 as
the rest-frame radiation form, there exists a semi–power-law
relationship spanning more than 1 order of magnitude in energy
between the width of pulses and energy, as well as between the
ratio of the rising width to the decaying width of pulses and en-
ergy. The upper and lower limits of this power-law range are well
related to the observed peak energy Ep of a fireball source.

2.2. The Case of Other Spectra

Let us consider as the rest-frame radiation form two other spec-
tra that are much different from the Band function (especially in
the high-energy band). One is the thermal synchrotron spectrum,
I� / (�/�0;s) exp ½�(�/�0;s)

1/3�, where �0,s is a constant including
all constants in the exponential index (Liang et al. 1983). The
other is the Comptonized spectrum, I� / �1þ� 0;C exp (��/�0;C),
where �0,C and �0,C are constants. A typical value �0;C ¼ �0:6
(Schaefer et al. 1994) for the index of the Comptonized radiation
will be adopted.

Figures 2a and 2b show the FWHM-�/�0,s and FWHM1/
FWHM2-�/�0,s curves, respectively, corresponding to the rest-
frame thermal synchrotron spectrum and local Gaussian pulse
(eq. [3]). A semi–power-law relationship can also be observed in
both plots. In the case of ���;FWHM ¼ 1 (where the turnover is
well defined in the two plots), we get from Figure 2a that �high ’
1:6 ; 105��0;s, 1:7 ; 105��0;s, and 1:7 ; 105��0;s for � ¼ 10,
100, and 1000, respectively, and that log �high � log �low ’
5:30, 5.53, and 5.66 for � ¼ 10, 100, and 1000, respectively,
and we obtain from Figure 2b that �high ’ 4:6 ; 105��0; s , 4:8 ;
105��0; s , and 4:7 ; 105��0;s for � ¼ 10, 100, and 1000, respec-
tively, and that log �high � log � low ’ 5:75, 5.99, and 6.09 for
� ¼ 10, 100, and 1000, respectively. This suggests that in the
case of the rest-frame thermal synchrotron spectrum, �high is pro-
portional to ��0,s and that the power-law range can span more
than 5 orders of magnitude in frequency.

Shown in Figures 2c and 2d are the FWHM-�/�0,p and
FWHM1/FWHM2-�/�0,p curves, respectively, associated with
the rest-frame Comptonized spectrum and arising from the local

Fig. 2.—Relationships between the FWHM and FWHM1/FWHM2 of pulses, on one hand, and energy, on the other, for light curve of eq. (2) confined within
0:99�/�0;p � �/�0;p � 1:01�/�0;p, in the case of adopting the thermal synchrotron spectrum (left) and Comptonized spectrum (right) as the rest-frame radiation form and
the Gaussian pulse as its local pulse. Dotted lines from bottom to top represent the curves associated with���;FWHM ¼ 0:01, 0.1, 1, and 10 for � ¼ 10; solid lines from
bottom to top represent the curves associated with���;FWHM ¼ 0:01, 0.1, 1, and 10 for � ¼ 100; dashed lines from bottom to top stand for the curves associated with
���;FWHM ¼ 0:01, 0.1, 1, and 10 for � ¼ 1000.

RELATIONSHIP BETWEEN GRB PULSE WIDTH AND ENERGY 1011No. 2, 2005



Gaussian pulse (eq. [3]). A semi–power-law relationship can also
be detected in both plots. In the case of���;FWHM ¼ 1we deduce
from Figure 2c that �high ’ 1:2 ; 102��0;C, 1:2 ; 102��0;C, and
1:3 ; 102��0;C for � ¼ 10, 100, and 1000, respectively, and that
log �high � log � low ’ 2:44, 2.45, and 2.46 for � ¼ 10, 100, and
1000, respectively, and we find from Figure 2d that �high ’
1:2 ; 102��0;C, 1:1 ; 102��0;C, and 1:2 ; 102��0;C for � ¼ 10,
100, and 1000, respectively, and that log �high � log � low ’ 2:45,
2.43, and 2.45 for �¼10, 100, and 1000, respectively. In the
case of the rest-frame Comptonized spectrum, � high is propor-
tional to ��0,C. The power-law range spans more than 2 orders of
magnitude in frequency.

We conclude that in the case of adopting a rest-frame spectrum
with an exponential tail in the high-energy band, a semi–power-
law relationship between the FWHM and energy or between
FWHM1/FWHM2 and energy can also be observed. The range
(spanning over more than 2 orders of magnitude in energy) is
much larger than in the case of the Band function. It seems
common that for a rest-frame spectrum, there exists a power-law
relationship between each of the FWHM and FWHM1/FWHM2
and energy within an energy range. The range is very sensitive to
the rest-frame spectrum and the product of the rest-frame peak
energy and the Lorentz factor.

2.3. The Case of the Rest-Frame Radiation
Form Varying with Time

It is known that the indexes of the spectra of many GRBs vary
with time (see Preece et al. 2000). We are curious as to what the
relationship is if the rest-frame spectrum develops with time.
Here, corresponding to the soft-to-hard phenomenon, let us con-
sider a simple casewhere the rest-frame spectrum is aBand function

with its indexes and the peak frequency decreasing with time. We
assume a simple evolution of indexes �0 and �0 and peak fre-
quency �0, p that follows �0 ¼�0:5� k(�� � ��;1)/(��;2 � ��;1),
�0 ¼ �2� k(�� � ��;1)/(��;2 � ��;1), and log �0;p ¼ 0:1� k(���
��;1)/(��;2 � ��;1) for ��;1 � �� � ��;2. For �� < ��;1, �0 ¼ �0:5,
�0 ¼ �2, and log �0;p ¼ 0:1, while for �� > ��;2,�0 ¼ �0:5� k,
�0 ¼ �2� k, and log � 0;p ¼ 0:1� k. We take k ¼ 0:1, 0.5, and
1 (these correspond to different rates of decrease) and adopt � ¼
10, 100, 1000, respectively, in the following analysis.

Let us employ the local Gaussian pulse of equation (3) with
���;FWHM ¼ 0:1 to study the relationship.We adopt ��;1 ¼ 9� þ
��;min and ��;2 ¼ 11�þ ��;min and oncemore assign ��;0 ¼ 10� þ
��;min and ��;min ¼ 0 (see above). Figure 3 displays the expected
FWHM-�/�0, p,max and FWHM1/FWHM2-�/�0, p,max curves,
where the frequency is presented in units of �0, p,max, which is the
largest value of �0, p adopted.
We find that when the rate of decrease becomes larger (say, k ¼

0:5 or 1), the relationships obviously differ fromwhat was noticed
above. In this situation, the relationship between the pulse width
and energy shows at least two semi–power-law ranges with the in-
dex in the lower energy band being positive, and therefore a peak
value of thewidthmarking the two lower energy power-law ranges
is observed. Accordingly, the lower band plateau noted above dis-
appears. In the case of the relationship between FWHM1/FWHM2
and �, a peak of FWHM1/FWHM2 marking two higher energy
semi–power-law ranges is also detected. This peaked feature is a
remarkable signature of the evolution of the rest-frame spectrum.

2.4. The Case of Other Local Pulses

Here we investigate whether different local pulses lead to a
very different result. Three forms of local power-law pulses are

Fig. 3.—Relationships between the FWHM of pulses and energy (top) and between FWHM1/FWHM2 and energy (bottom) for the light curve of eq. (2) confined
within 0:99�/�0;p � �/�0;p � 1:01�/�0;p in the case of adopting the varying Band function (see x 2.3) as the rest-frame radiation form and the Gaussian pulse of eq. (3)
with���;FWHM ¼ 0:1 as its local pulse, for � ¼ 10 (left), 100 (middle), and 1000 (right), where �0; p;max ¼ 100:1. The dotted, dashed, and solid lines represent the curves
with k ¼ 0:1, 0.5, and 1.0, respectively.
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considered. We choose power-law forms instead of other local
pulse forms due to the fact that different values of the power-law
index correspond to entirely different forms of local pulses.

The first is the local pulse with a power-law rise and a power-
law decay, which is assumed to be

Ĩ(��) ¼ I0

�� � ��;min

��;0 � ��;min

� ��

; ��;min � �� � ��;0;

1� �� � ��;0
��;max � ��;0

� ��

; ��;0 < �� � ��;max;

8>>><
>>>:

ð4Þ

where I0, �, ��,min, ��,0, and ��,max are constants. The peak of this
intensity is at ��,0, and the two FWHM positions of this intensity
before and after ��,0 are ��;FWHM1 ¼ 2�1/���;0 þ (1� 2�1/�)��;min

and ��;FWHM2 ¼ 2�1/���;0 þ (1� 2�1/�)��;max , respectively. In the
case of � ¼ 2, the FWHMof this local pulse is���;FWHM ¼ (1�
1/

ffiffiffi
2

p
)(��;max���;min), which leads to ��;max ¼���;FWHM/(1�

1/
ffiffiffi
2

p
)þ ��;min. The second is the local pulse with a power-law

rise, which is written as

Ĩ(��) ¼ I0
�� � ��;min

��;max � ��;min

� ��

; ��;min � �� � ��;max: ð5Þ

The peak of this intensity is at ��,max. In the case of � ¼ 2, the
relation of ��;max ¼ ���;FWHM/(1� 1/

ffiffiffi
2

p
)þ ��;min holds. The

third is the local pulse with a power-law decay that follows

Ĩ(��) ¼ I0 1� �� � ��;min

��;max � ��;min

� ��

; ��;min < �� � ��;max: ð6Þ

The peak of this intensity is at ��,min. In the case of � ¼ 2, the
relation of ��;max ¼ ���;FWHM/(1� 1/

ffiffiffi
2

p
)þ ��;min holds aswell.

We assign ��;min ¼ 0 and � ¼ 2 and take ���;FWHM ¼ 0:01,
0.1, 1, and 10, � ¼ 10, 100, 1000, �0 ¼ �1, and �0 ¼ �2:25
to study the width of light curves arising from these forms of
local pulses. For the local pulse given by equation (4), we adopt
��;0 ¼ ��;max/2.

We find in the FWHM-�/�0, p and FWHM1/FWHM2-�/�0, p
plots (which are omitted due to the similarity to Fig. 1) associated
with the local pulse given by equation (4) that a semi–power-law
relationship between each of the two pulse width quantities and
frequency is also observed for all sets of the adopted parameters.
The power-law range of frequency is quite similar to that in the
case of the local Gaussian pulse. The only significant differences
are that (1) the magnitude of the width of the expected light curve
is much smaller than in the case of the local Gaussian pulse if the
local pulse width is sufficiently large (when the local pulse width
is small enough, the observed width of the light curve differs
slightly), and that (2) the magnitude of the ratio of widths of the
corresponding light curve is much larger than in the case of the
local Gaussian pulse, regardless how large the local pulse width
is. From the FWHM-�/�0, p curves we find that for all the adopted
values of the Lorentz factor (� ¼ 10, 100, and 1000), �high ’
(2:4 2:5)��0;p, and for � ¼ 10, 100, and 1000, log �high�
log �low ’ 1:19 1:38, 1.19–1.38, and 1.20–1.38, respectively.
From the FWHM1/FWHM2-�/�0, p curves we get �high ’ (1:7
2:6)��0;p, (1.8–2.5)��0, p, and (1.8–2.5)��0, p for � ¼ 10, 100,
and 1000, respectively, and log �high � log �low ’ 1:21 1:37,
1.20–1.39, and 1.20–1.38 for � ¼ 10, 100, and 1000, respec-
tively. The values of (FWHM1/FWHM2)min and (FWHM1/
FWHM2)max rely only on the local pulse width���, FWHM, being
independent of the Lorentz factor. Thus, the conclusion obtained

in the case of the local Gaussian pulse holds when adopting the
local pulse given by equation (4).

Adopting the local pulse given by equation (5), one ob-
tains similar results. We find from the relationship between the
width of pulses and frequency that �high’ (2:3 2:5)��0;p, (2.4 –
2.5)��0, p, and (2.4–2.5)��0, p for � ¼ 10, 100, and 1000, re-
spectively, and log �high � log � low ’ 1:19 1:26,1.19–1.28, and
1.20–1.28 for� ¼ 10,100, and 1000, respectively. In addition,we
get from the relationship between the ratio of widths FWHM1/
FWHM2 and frequency that �high ’ 2:5��0;p, 2.5��0, p, and
(2.5–2.6)��0, p for � ¼ 10, 100, and 1000, respectively, and
log �high � log �low ’ 1:20 1:26, 1.20–1.25, and 1.20–1.25 for
� ¼ 10, 100, and 1000, respectively. In the sameway, we get sim-
ilar results when adopting the local pulse given by equation (6).
From the relationship between the width of pulses and fre-
quency, we obtain �high ’ (2:3 2:5)��0;p, (2.4–2.5)��0, p, and
(2.4–2.5)��0, p for � ¼ 10, 100, and 1000, respectively, and
log �high � log �low ’ 1:19 1:39, 1.20–1.48, and 1.20–1.47 for
� ¼ 10, 100, and 1000, respectively. From the relationship be-
tween the ratio of widths and frequency we find �high ’ (2:0
2:4)��0;p, (2.0–2.4)��0, p, and (2.1–2.4)��0, p for � ¼ 10, 100,
and 1000, respectively, and log �high � log � low ’ 1:19 1:49,
1.19–1.51, and 1.19–1.52 for � ¼ 10, 100, and 1000, respec-
tively. In both cases, the values of (FWHM1/FWHM2)min and
(FWHM1/FWHM2)max are independent of the Lorentz factor
as well, relying only on the local pulse width ���,FWHM.

We come to the conclusion that a power-law relationship
between each of the two pulse width quantities and frequency is
observed in light curves arising from different local pulse forms.
The power-law range is not significantly influenced by the local
pulse form, but themagnitudes of the width and the ratio of widths
are obviously affected.

3. THE RELATIONSHIP EXPECTED FOR TYPICAL
HARD AND SOFT BURSTS

As suggested by observation, the value ofEp of bright GRBs is
mainly distributed within 100–600 keV (see Preece et al. 2000).
According to the above analysis, the power-law range of many
bright GRBs is within the energy range covering the four BATSE
channels, and this power-law relationship was detected by many
authors. However, for this kind of burst, the power-law rela-
tionship would fail in the energy range of Swift, or there would be
a turnover in the relationship within this energy range, assuming
that the typical Band function radiation form could approxi-
mately be applicable. Here we analyze the relationship between
the quantities discussed above in the energy range covering both
the BATSE and Swift channels for some typical GRBs. The
bursts concerned are the so-called hard and soft bursts, which are
defined as GRBs with peak energy Ep located above and below
the second BATSE channel, Ep > 100 keV and Ep < 50 keV,
respectively. According to this definition, most of bright bursts
belong to hard bursts, and according to Strohmayer et al. (1998),
many Ginga bursts are soft ones.

Assume that typical hard and soft bursts differ only by the
Lorentz factor of the expanding motion of the fireball surface. As
Ep / � (see Qin 2002), taking Ep ¼ 250 keVas a typical value of
the peak energy for hard bursts (see Preece et al. 2000) and
assigning � ¼ 200 to be the Lorentz factor of these sources, one
finds the typical value of the peak energy of a soft burst with
� ¼ 20 to be Ep ¼ 25 keV, which is well within the range of soft
GRBs defined above.

The energy range with which we are concerned here, which
covers both BATSE and Swift, is divided into the following eight
channels: ½E1; E2� ¼ ½1; 2� keV (channelA), [2,5] keV (channelB),
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[5, 10] keV (channel C), [10, 20] keV (channel D), [20, 50] keV
(channel E), [50, 100] keV (channel F), [100, 300] keV (channelG),
and [300, 1000] keV (channel H). The last four channels are the
four BATSE channels.

3.1. Prediction for Various Rest-Frame Radiation Forms

Here we predict the relationship for the typical hard and soft
bursts when different rest-frame radiation forms such as the Band
function spectrum, thermal synchrotron spectrum, and Comp-
tonized spectrum are involved.

In the case of the Band function, following Qin (2002) we
adopt the relation �p ’ 1:67��0;p. Applying Ep ¼ 250 keV and
� ¼ 200, we obtain �0;p ¼ 0:75 keV h�1, which will be applied
to both the typical hard and soft bursts.

From Preece et al. (2000), we find that the low-energy power-
law index of bright bursts is mainly distributed within �2 to 0
and that the high-energy power-law index is distributed mainly
within �3.5 to �1.5. According to Qin (2002), the indexes are
not significantly affected by the Doppler effect of fireballs. We
therefore consider indexes within these ranges.

We calculate the FWHM and the ratio of the rising width
FWHM1 to the decaying width FWHM2 of the eight channels
defined above in the case of adopting the rest-frameBand function
spectrum with (�0; �0) ¼ (� 1; �2:25) and the local Gaussian
pulse with various widths, calculated for both the typical hard
(� ¼ 200 and �0;p ¼ 0:75 keV h�1) and soft (� ¼ 20 and �0;p ¼
0:75 keV h�1) bursts (the corresponding table is omitted).

Displayed in Figures 4a and 4b are the relationships between
FWHM/FWHME and E/keV and between FWHM1/FWHM2
and E/keV, respectively, in the case in which the local Gaussian
pulse with ���;FWHM ¼ 0:1 is adopted, where FWHME is the
width of channel E, which is the first BATSE channel. One finds
that in the situation considered here, for the typical hard burst
the values of FWHM/FWHME and FWHM1/FWHM2 in the first
four channels (within the Swift range) obviously deviate from
the power-law curve determined by the data of the four BATSE
channels. For the typical soft burst, the power-law range is no
longer in the BATSE band but instead shifts to the Swift band.We
find that in the case of the typical hard burst, the power-law index
deduced from the BATSE channels is within �0.18 to �0.09.
Presented in Figures 4a and 4b are also the data in both the

BeppoSAX andHETE-2 bands. One finds that the relationships in
these two bands obey the same laws implied by those in the eight
channels adopted above. (Note that the data in the highest energy
channel of BeppoSAX and the highest energy channel ofHETE-2
are seen to be off the corresponding relationship curves derived
from the eight channels, which is due to the wider energy ranges
attached to these two channels.)
The FWHM and the ratio FWHM1/FWHM2 of the eight

channels in the case of the rest-frame Band function spectra with
(�0; �0) ¼ (0;�3:5) and (�1.5, �2) for the typical hard and
soft bursts, respectively, are also calculated (the tables contain-
ing the corresponding values are omitted). We find that for the
typical hard burst, the deviation of the data of the low-energy

Fig. 4.—Prediction of the relationships between the width of pulses and energy (top) and between the ratio of the FWHM of the rising portion to that of the decaying
phase of the light curve of pulses, on one hand, and energy, on the other (bottom), for the typical hard (crosses) and soft ( filled circles) bursts. The widths are deduced
from the light curve of eq. (2) associated with the local Gaussian pulse and the rest-frame Band function with �0 ¼ �1, �0 ¼ �2:25, and �0;p ¼ 0:75 keV h�1 (left),
thermal synchrotron spectrum with �0;s ¼ 3:5 ; 10�3 keV h�1 (middle), and Comptonized spectrum with �0;C ¼ �0:6 and �0;C ¼ 0:55 keV h�1 (right), confined
within channels A, B, C, D, E, F, G, and H, where we adopt���;FWHM ¼ 0:1 and take � ¼ 200 and � ¼ 20 for typical hard and soft bursts, respectively. The solid line
is the power-law curve deduced from the data of the BATSE channels for the typical hard burst. Open squares in left panels represent the expected data of BeppoSAX,
and open circles filled with pluses stand for those of HETE-2.
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Swift channels from the power-law relationship deduced from
the data of the four BATSE channels is observed in the two cases
considered here. For the typical soft burst, the power-law range is
observed in the Swift band. In the case of (�0; �0) ¼ (0; �3:5),
the index of the power-law relationship deduced from the four
BATSE channels for the typical hard burst ranges from�0.48 to
�0.27, while in the case of (�0; �0) ¼ (� 1:5; �2), the index is
confined within �0.07 to �0.03.

Besides these rest-frame spectra, we have considered several
rest-frame Band function spectra with other sets of indexes, and
they lead to similar results (the results are omitted).

In the case of the rest-frame thermal synchrotron spectrum, we
take �0; s ¼ 3:5 ; 10�3 keV h�1 (see Qin 2002, Table 3). Dis-
played in Figures 4c and 4d are the two relationships in the case
of adopting the Gaussian pulse of equation (3) with���;FWHM ¼
0:1 as the local pulse. We see that for the typical hard burst, both
the width and the ratio of the rising to the decaying widths in the
lower energy range of Swift deviate slightly from the power-law
curves obtained from the data from the BATSE channels. For
the typical soft burst, the power-law range covers all eight of the
channels with which we are concerned, which is very different
from the case of the Band function. The most remarkable re-
sult is that both the lower and higher band plateaus disappear (for
both the typical hard and soft bursts) within these channels. We
find that for the typical hard burst, the power-law index deduced
from the BATSE channels is within �0.22 to �0.12.

In the case of the rest-frame Comptonized spectrum (where we
adopt �0;C ¼ �0:6 as well), we take �0;C ¼ 0:55 keV h�1 (see
Qin 2002, Table 2). The relationships in the case of adopting the
Gaussian pulse of equation (3) with���;FWHM ¼ 0:1 as the local
pulse are presented in Figures 4e and 4f. As shown in these plots,
the deviation mentioned above is also observed. The higher band
plateaus disappear while the lower ones remain (at least for the
typical hard burst) within these channels. For the typical soft
burst, the power-law range would span the BATSE channels as
well as a few lower energy channels next to them.We find in this
situation that for the typical hard burst, the power-law index in
the BATSE channels is within �0.32 to �0.18, while for the

typical soft burst the power-law index in the BATSE channels is
within �0.59 to �0.17.

3.2. Prediction When the Rest-Frame Radiation
Form Varies with Time

Here we make our prediction under the assumption that the
rest-frame spectrum takes a Band function form with its indexes
and peak energy decreasing with time.

In the same way, we assign � ¼ 200 to the typical hard burst
and � ¼ 20 to the soft one. The Gaussian pulse of equation (3)
with���;FWHM ¼ 0:1 is taken as the local pulse, where we once
more assign ��;0 ¼ 10�þ ��;min and ��;min ¼ 0.

One finds in Preece et al. (2000) the parameters of the high
time resolution spectroscopy of 156 bright GRBs. The Band func-
tionmodel, the broken power lawmodel (including the smoothly
broken power law model), and the Comptonized spectral model
were employed to fit these sources. Identifying them by the mod-
els with which they were fitted, we have three classes, where the
class fitted with the Band function contains 95 bursts (sample 1),
that of the broken power law includes 55 sources, and that of the
Comptonized class has six. We find in sample 1 that statistically,
the low- and high-energy indexes� and � and the peak energyEp

of the sources decrease with time. Even for short bursts, this is
common. Shown in Figure 5 are the developments of the two
indexes and the peak energy for this sample, where a relative
timescale (t � tmin)/(tmax� tmin) is introduced to calculate the rel-
evant correlations. As shown in the figure, the regression line for
the low-energy index is � ¼ �0:63� 0:20(t � tmin)/(tmax � tmin),
that for the high-energy index is � ¼ �2:44� 0:42(t � tmin)/
(tmax � tmin), and that for the peak energy is log (Ep/keV) ¼
2:46� 0:16(t � tmin)/(tmax � tmin). As the spectrum observed is
not significantly affected by the Doppler effect of fireballs (see
Qin 2002), this suggests that the rest-frame radiation form of the
sources develops with time as well.

We find from sample 1 that the medians of the distribution
of the uncertainty of the three parameters are �Ep

¼ 33:1 keV,

Fig. 5.—Developments of the low- and high-energy indexes and the peak
energy of sample 1 in terms of a relative timescale, where tmin and tmax are the
lower and the upper limits of the observation time of individual sources. The
solid line is the regression line.

Fig. 6.—Prediction of the relationships between the width of pulses and en-
ergy (top) and between the ratio of the FWHM of the rising portion to that of the
decaying phase of the light curve of pulses, on one hand, and energy, on the other
(bottom), for the typical hard (crosses) and soft ( filled circles) bursts in the case
where the indexes and the peak energy of the rest-frame Band function spectrum
decrease with time. The widths are calculated from light curve of eq. (2) arising
from local Gaussian pulse of eq. (3), confined within channels A, B, C, D, E, F, G,
and H, where we adopt ���;FWHM ¼ 0:1 and take � ¼ 200 and � ¼ 20 for the
typical hard and soft bursts, respectively. The solid line is the power-law curve
deduced from the data of the BATSE channels for the typical hard burst.
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�� ¼ 0:136, and �� ¼ 0:196, while the medians of the distri-
bution of the deviation (in absolute values) of the data from the
regression lines deduced above for the three parameters are
j�Epj ¼ 97:0 keV, j��j ¼ 0:297, and j��j ¼ 0:410. This shows
that in terms of statistics, the measurement uncertainties are gen-
erally less than the dispersions of data of the three parameters.
In this section, we are interested only in the general manner of
the development of the three parameters. Therefore, consider-
ing the manner of development illustrated above (represented
by the regression lines) is enough. Thus, let us consider a typ-
ical evolution of rest-frame indexes �0, �0, and peak energy
E0, p following �0 ¼ �0:63�0:20(�����;1)/(��;2���;1), �0 ¼
�2:44�0:42(�����;1)/(��;2���;1), and log (E0;p/keV) ¼�0:06�
0:16(�� � ��;1)/(��;2 � ��;1) for ��;1 � �� � ��;2 (to deduce the last
formula, the previously adopted relation Ep ’ 1:67�E0; p is ap-
plied to the typical hard burst, for which the Lorentz factor is as-
sumed to be � ¼ 200). For �� < ��;1, �0 ¼ �0:63, �0 ¼�2:44,
and log (E0;p/keV)¼�0:06, while for �� > ��;2 , �0 ¼ �0:83,
�0 ¼�2:86, and log (E0;p/keV) ¼ �0:22. Asmentioned above,
we employ local Gaussian pulse of equation (3)with���; FWHM ¼
0:1 and assign ��;0 ¼ 10�þ ��;min and ��;min ¼ 0 to study the re-
lationship. We adopt ��;1 ¼ 9�þ ��;min and ��;2 ¼ 11�þ ��;min.
The corresponding relationships obtained in this situation are
displayed in Figure 6. The deviation shown above is also ob-
served in this figure. For the typical soft burst, the power-law
range shifts to the Swift band as well.We find that the power-law
index in the BATSE channels for the typical hard burst is within
�0.27 to �0.08.

We note that the peaked feature suggested above does not
appear. Instead, both the lower and higher band plateaus shown

in Figures 4a and 4b remain. This might be due to the low speed
of development of the rest-frame spectrum considered here (see
below).

4. THE RELATIONSHIP SHOWN IN INDIVIDUAL
PULSES OF A BATSE GRB SAMPLE

Presented in Kocevski et al. (2003) is a sample (the KRL
sample) of FRED pulse GRBs. We consider only the first pulse
of each burst since it is this pulse that is more closely associated
with the initial condition of the event and might be less affected
by environment. In addition, we limit our study to the sources for
which the values of the peak energy are available and the cor-
responding signals are obvious enough so that the pulse widths
of at least three BATSE channels can be well estimated. We find
28 bursts in the KRL sample that meet these requirements. For
these sources, the peak energy values are taken from Mallozzi
et al. (1995). To find the central values of data of the light curve,
we simply adopt equation (22) of Kocevski et al. (2003) to fit the
corresponding light curve since we find that the form of the
function can well describe the observed profile of a FRED pulse.
The pulse width in each BATSE channel is then estimated with
the fitting parameters.
The estimated values of the FWHM of the 28 GRB pulses in

various energy channels are presented in Table 3. The relation-
ships between the pulse width and energy for these pulses are
shown in Figure 7. Also plotted in Figure 7 are the limits of the
corresponding power-law ranges of these pulses estimated with
their peak energies according to the relations log Elow� log Ep ’
�1:10 to �1.02 and log Ehigh � log Ep ’ 0:157 to 0.177, which
are deduced from the typical rest-frame Band function spectrum

TABLE 3

Estimated Values of the FWHMs of the Four BATSE Channels for the 28 GRB Sources

Trigger W1 �W1 W2 �W2 W3 �W3 W4 �W4

907................ . . . . . . 6.791 0.898 3.826 0.338 2.441 0.212

914................ 3.915 0.176 2.562 0.159 1.269 0.350 . . . . . .

973................ 7.874 4.530E�6 7.177 0.393 7.072 1.818E�2 5.008 0.360

1406.............. 11.375 9.846E�6 9.765 6.605�2 8.041 5.820 . . . . . .
1467.............. 6.400 0.735 7.053 1.178E�6 5.984 0.569 . . . . . .

1733.............. 4.989 0.910 4.463 0.454 4.069 0.746 3.308 0.896

1883.............. 3.874 0.106 3.288 0.0207 2.585 0.067 1.325 0.053

1956.............. 4.920 2.762E�2 4.812 0.326 3.897 0.573 . . . . . .

2083.............. 3.961 1.675E�4 2.365 1.124 0.892 0.424 0.720 0.206

2102.............. 3.488 0.424 4.119 1.001 3.526 0.477 . . . . . .

2387.............. 18.447 1.295 15.602 1.229 15.085 0.667 . . . . . .
2484.............. 7.081 2.503 5.241 1.054 4.687 3.200E�2 . . . . . .

2665.............. 7.205 0.312 5.814 0.367 4.391 0.409 . . . . . .

2880.............. 1.319 3.360E�2 1.365 9.737E�2 1.150 2.748E�2 . . . . . .

2919.............. 4.257 8.533E�2 3.714 0.502 2.906 0.942 1.045 0.429

3143.............. 2.238 0.329 1.908 2.617 1.334 0.101 . . . . . .

3155.............. 0.925 0.592 1.229 1.280 1.044 0.302 . . . . . .

3870.............. 1.842 2.419E�2 2.312 1.514E�2 1.336 1.264E�2 . . . . . .

3875.............. 0.759 1.751E�2 1.088 0.111 0.592 0.367 . . . . . .
3886.............. 0.954 3.857E�2 0.661 5.198E�2 0.666 8.197E�2 . . . . . .

3892.............. 2.979 2.973E�2 1.609 0.180 1.383 0.185 . . . . . .

3954.............. 2.962 1.125 2.533 0.577 2.602 0.379 0.941 0.0860

4157.............. 5.368 1.149 4.209 0.470 1.014 5.743E�2 . . . . . .

5478.............. 5.052 0.680 6.267 0.251 4.246 0.190 . . . . . .

5495.............. 1.929 3.197E�4 1.740 2.940E�2 1.096 9.084E�2 . . . . . .

5517.............. 3.004 1.032 3.146 1.296 2.156 5.173E�2 . . . . . .
5523.............. 3.877 5.971E�2 4.257 0.488 3.028 2.176E�2 . . . . . .

5541.............. 4.420 6.866E�2 3.744 1.090 4.862 5.372E�2 . . . . . .

Note.—W1, W2, W3, and W4 are the FWHMs of pulses in the first (20–50 keV), second (50–100 keV), third (100–300 keV), and
fourth (>300 keV) energy channels of BATSE, respectively.
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with �0 ¼ �1 and �0 ¼ �2:25 (see x 2.1), where only the
largest value of Elow and the smallest value of Ehigh associated
with the provided value of Ep are presented.

From Figure 7 we find the following:

1. A power-law range is observed in 13 sources: 907, 914,
1406, 1733, 1883, 2083, 2483, 2665, 2919, 3143, 3954, 4157,
and 5495.

2. A lower band plateau is observed or suspected in eight
bursts: 973, 1773, 1883, 1956, 2919, 3143, 4157, and 5495.

3. A higher band plateau is observed or suspected in six
sources: 907, 2083, 2387, 2484, 3886, and 3892.

4. A peaked feature is observed or suspected in 10 GRBs:
1467, 2102, 2880, 3155, 3870, 3875, 3954, 5478, 5517, and 5523.

Among the 28 sources, those belonging to the plateau/power
law/plateau feature group include 907, 914, 973, 1406, 1733,
1883, 1956, 2083, 2387, 2484, 2665, 2919, 3143, 3886, 3892,
4157, and 5495. Those belonging to the peaked feature class are
1467, 2102, 2880, 3155, 3870, 3875, 3954, 5478, 5517, and
5523. This suggests that the features shown in the relationship
obtained from the 27 sources (called normal bursts) are those
predicted by the Doppler effect offireballs. The only exception is
5541, which shows a sinkage instead of a peaked feature in the
relationship, which is not a result of our analysis.

In addition, we find that for 14 bursts (907, 914, 1406, 1733,
1883, 2083, 2387, 2484, 2665, 2919, 3143, 3892, 3954, and
5495), the power-law ranges expected from the range associated
with the typical rest-frame Band function spectrum with �0 ¼
�1 and �0 ¼ �2:25 and the provided value of Ep are consis-
tent with what is derived from the observational data. For other
normal bursts (there are 13), the two power-law ranges are not in
agreement. Among these 13 normal bursts, the power-law range
of burst 3886 is in a lower energy band than itsEp suggests, while
for others, the power-law range is in a higher energy band than
the provided value of Ep allows. If the relation (that is associated
with the typical rest-frame Band function spectrum with �0 ¼
�1 and �0 ¼ �2:25) used to derive the power-law range with
the provided value of Ep is approximately applicable to these
sources, the difference could be explained by assuming that the
peak energies of these bursts have been underestimated. This as-
sumption might be true since peak energies are always measured
from time-integral spectra that must shift to a lower energy band
from the hardest spectra of the sources. Under this interpretation,
only the problem of the behavior of burst 3886 is unsolved.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have studied in detail how the pulse width
FWHM and the ratio of the rising width to the decaying width

Fig. 7.—Relationship between the observed FWHM of pulses and energy shown in the BATSE energy range for the 28 GRBs concerned, where for some bursts the
widths in all four BATSE channels are known while for others only the widths in three channels are available. The dashed vertical line represents the expected lower
limit Elow of the power-law range, and the solid vertical line stands for the higher limit Ehigh; the limits are associated with the typical rest-frame Band function spectrum
with �0 ¼ �1 and �0 ¼ �2:25 and the provided value of Ep.
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FWHM1/FWHM2 of GRBs are related to energy under the as-
sumption that the sources are in the relativistically expanding
fireball stage.

The following can be concluded from our analysis: (1) Owing
to the Doppler effect of fireballs, it is common that there exists
a power-law relationship between FWHM and energy and be-
tween FWHM1/FWHM2 and energy within a limited range of
frequency. (2) The power-law range and index depend strongly
on the rest-frame radiation form as well as the observed peak en-
ergy (the range spans more than 1–5 orders of magnitude in en-
ergy for different rest-frame spectra). (3) The upper and lower
limits of the power-law range can be determined from the ob-
served peak energy Ep. (4) In cases where the development of
the rest-frame spectrum is ignored, a plateau/power law/plateau
feature is formed, while in cases where the rest-frame spectrum
is obviously softening with time, a peaked feature is observed. In
addition, we find that local pulse forms affect only the magnitude
of the width and the ratio of the widths.

We make predictions of the relationships for a typical hard
burst with� ¼ 200 and a typical soft burst with� ¼ 20. The anal-
ysis shows that generally, for the typical hard burst the power-law
range is observed in the BATSE band while for the typical soft
burst the power-law range shifts to the Swift band. In some par-
ticular cases (e.g., when the rest-frame thermal synchrotron spec-
trum is adopted), the power-law range covers the BATSE as well
as the Swift bands for both typical bursts.

A sample of 28 GRBs has been employed to study the re-
lationship. We find that except for burst 5541, sources of the

sample either exhibit the plateau/power law/plateau feature
(including 17 bursts) or show the peaked feature (including
10 bursts). This suggests that for most sources of this sample, the
Doppler effect of fireballs could indeed account for the observed
relationship. As for burst 5541, we wonder whether other kinds
of rest-frame spectral evolution, such as a soft to hard to soft
manner instead of the simple decreasing pattern, could lead to its
specific feature (this deserves further investigation). Since the
peaked feature is a signature of the development of the rest-frame
spectrum, we suspect that the 10 sources with the peaked feature
might undergo an obvious evolution of radiation, while for the
other 17 bursts, the development, if it exists, might be very mild.
In the above analysis, we consider the evolution of three pa-

rameters, the lower and higher energy indexes and the peak
energy, of the rest-frame Band function spectrum. We wonder
what role each of the three factors plays in producing the peaked
feature shown above. Here we study once more the case of the
simple evolution of indexes �0 and �0 and peak frequency �0, p
considered in x 2.3, but in three different patterns. They are
as follows: (1) �0 ¼ �0:5� (�� � ��;1)/(��;2 � ��;1) for ��;1 �
�� � ��;2, �0 ¼ �0:5 for �� < ��;1, �0 ¼ �1:5 for �� > ��;2 ,
�0 ¼ �2, and log �0; p ¼ 0:1; (2) �0 ¼ �2� (�� � ��;1)/(��;2�
��;1) for ��;1 � �� � ��;2 , �0 ¼ �2 for �� < ��;1, �0 ¼ �3 for
�� > ��;2, �0 ¼ �0:5, and log �0; p ¼ 0:1; (3) log �0;p ¼ 0:1�
(�� � ��;1)/(��;2 � ��;1) for ��;1 � �� � ��;2 , log �0;p ¼ 0:1 for
�� < ��;1, log �0;p ¼ 1:1 for �� > ��;2, �0 ¼ �0:5, and �0 ¼
�2. The first pattern is associated with the evolution of the
lower energy index of the rest-frame Band function spectrum,

Fig. 8.—Relationships between the FWHM of pulses and energy (top) and between the ratio FWHM1/FWHM2 and energy (bottom) for the light curve of eq. (2)
confined within 0:99�/�0;p � �/�0;p � 1:01�/�0;p, in the case of adopting various patterns of development of the Band function as the rest-frame radiation form and
Gaussian pulse of eq. (3) with���;FWHM ¼ 0:1 as its local pulse and taking � ¼ 100 and k ¼ 1:0. The solid lines in the left panels represent the curves associated with
the case in which only the lower energy index varies with time; the solid lines in the middle panels represent those associated with the case in which only the higher
energy index varies with time; the solid lines in the right panels stand for those associated with the case in which only the peak energy varies with time. The dotted lines
represent the corresponding curves with � ¼ 100 and k ¼ 1:0 in Fig. 3 (i.e., the solid lines in the center panels of Fig. 3).
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the second reflects nothing but the evolution of the higher energy
index of the same, and the third connects with the evolution of
the peak energy of the same, where for each of the three cases, the
other two parameters are fixed. In the same way we employ the
local Gaussian pulse of equation (3) with ���;FWHM ¼ 0:1 to
study the relationship.We adopt� ¼ 100, ��;1 ¼ 9�þ ��;min, and
��;2 ¼ 11�þ ��;min , and assign ��;0 ¼ 10�þ ��;min and ��;min ¼
0. Displayed in Figure 8 are the corresponding FWHM-�/�0, p , max

and FWHM1/FWHM2-�/�0, p ,max curves, where �0, p,max is the
largest value of �0, p adopted. One finds from Figure 8 that the
peaked feature shown in the relationship between the width and
energy (see Fig. 3) is mainly due to the evolution of the lower
energy index of the rest-frame Band function spectrum, while that
shown in the relationship between the ratio of pulse widths and
energy arises from the evolution of the higher energy index. It is
interesting that no contribution from the evolution of the peak
energy of the rest-frame Band function spectrum to the features is
detected (probably the evolution of the peak energy considered
here is too mild to produce an interesting feature).

As mentioned above, it has been proposed by many authors
that the power-law relationship observed in GRB pulses could
arise from synchrotron radiation (see x 1). A simple synchrotron
cooling scenario is that as the electrons cool, their average en-
ergy becomes smaller, which causes the emission peaks at lower
energy at later times (see Kazanas et al. 1998). Recently, a power-
law relationship between the total isotropic energy and Ep was
revealed (Lloyd et al. 2000; Amati et al. 2002). It has been sug-
gested that this power-law relation can be expected in the case of
an optically thin synchrotron shock model for a power-law dis-
tribution of electrons (see Lloyd et al. 2000). These consider-
ations lead to a softening picture of the rest-frame spectrum.

Does the proposal of synchrotron radiation conflict with the
effect discussed above? To find an answer to this, it might be
helpful to recall that the Doppler effect of fireballs is only a ki-
netic effect while that of synchrotron radiation is a dynamic one.
Therefore, there is no conflict between the two. As analyzed in
x 2.3, a softening of the rest-frame spectrum coupled with the
Doppler effect of fireballs would lead to a peaked feature in the
relationship between the pulse width and energy if the speed of
the softening is fast enough. The observed data of our sample (see
Fig. 7) show that this is indeed the case for some events (at least
for some FRED pulse GRBs).

We wonder whether the softening of the rest-frame spectrum
could lead to a much different value of the power-law index. We
thus analyze the power-law ranges in the top panels of Figure 3
and find that the index is confined within�0.27 to�0.18, which
is not very different from what was obtained above.

We know that light curves of most bursts are complex and
do not consist of single pulses. It has been pointed out that the
superposition of many pulses could create the observed diversity
and complexity of GRB light curves (Fishman et al. 1994; Norris
et al. 1996; Lee et al. 2000a, 2000b). Could our analysis be ap-
plied to all light curves observed in GRBs? The answer is no.
The Doppler effect of fireballs is associated with the angular
spreading timescale, which is proportional to 1/2�2 (see, e.g.,
Kobayashi et al. 1997; Piran 1999; Nakar & Piran 2002; Ryde
& Petrosian 2002). Our model would not be applicable to light
curves of multipulses, which are separated by timescales larger
than the angular spreading timescale.

What would happen if local pulses are close enough? Let us
consider a local pulse comprising three Gaussian forms:

Ĩ(��) ¼ I0;1 exp � �� � ��;0;1
�1

� �2
" #

þ I0;2 exp � �� � ��;0;2
�2

� �2
" #

þ I0;3 exp � �� � ��;0;3
�3

� �2
" #

;

��;min � ��; ð7Þ

where I0,1, I0,2, I0,3, �1, �2, �3, ��,0,1, ��,0,2, ��,0,3, and ��,min are
constants. We calculate the light curves of equation (2) arising
from the local pulse of equation (7) and emitted with the typical
rest-frame Band function spectral form with �0 ¼ �1 and �0 ¼
�2:25, adopting I0;1 ¼ 0:15, I0;2 ¼ 0:2, I0;3 ¼ 0:04, �1 ¼ 0:3,
�2 ¼ 0:2, �3 ¼ 0:2, ��;0;1 ¼ 5�1 þ ��;min, ��;0;2 ¼ ��;0;1 þ 4�1,
��;0;3 ¼ ��;0;2 þ 7�2, �0;p ¼ 0:75 keV h�1, and � ¼ 200, and
assigning ��;min ¼ 0. In Figure 9 we show the corresponding
light curves in channels A, B, C, D, E, F, G, and H, and in Fig-
ure 10 we present the relationships between FWHM/FWHME

and E/ keV and between FWHM1/FWHM2 and E/ keV deduced
from these light curves. We find no significant difference between

Fig. 9.—Light curves in channels B, E, A, C, D, F, G, and H (top to bottom) for
the typical hard burst (� ¼ 200). The curves are calculatedwith eq. (2)when adopt-
ing the local pulse comprising the three Gaussian forms shown by eq. (7) and the
rest-frame Band function with �0 ¼ �1, �0 ¼ �2:25, and �0; p ¼ 0:75 keV h�1.

Fig. 10.—Prediction of the relationships between the width of pulses and
energy (top) and between the ratio of the FWHM of the rising portion to that of
the decaying phase of the light curve of pulses, on one hand, and energy, on the
other (bottom), for the typical hard burst. The widths are deduced from the light
curves of Fig. 9.
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these relationships and those in Figure 4 (the data of the typical
hard burst there).

It should be pointed out that in this paper we are interested in
cases where the Doppler effect of fireballs is important and thus
we examine only FRED pulse sources. It would not be surprising
if the results are not applicable to other forms of pulses. In the
case where the mentioned effect is not at work, a power-law re-
lationship might also exist. If so, synchrotron radiation might be
responsible for the observed relationship. This, we believe, also

deserves a detailed investigation (probably, in this case, the pulses
concerned should be non-FRED ones).
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and the National Natural Science Foundation of China (grant
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